Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems.
نویسندگان
چکیده
Graphene quantum dots (GQDs) were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox). The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD) peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs). The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells.
منابع مشابه
Magnetic Graphene Quantum Dots as a Functional Nanomaterial Towards Voltammetric Detection of L-tryptophan at Physiological pH
L-Tryptophan (L-Trp) is of great importance in the biochemical, pharmaceutical and dietetic fields as it is precursor molecule of some hormones, neurotransmitters and other relevant biomolecules. So, determination of this amino acid has important role in detection of some neuron based disease. The main purpose of this report was to develop application of Fe3O4 magnetic nanoparticles/graphene qu...
متن کاملA Critical Comparison Study on the pH-Sensitive Nanocomposites Based on Graphene-Grafted Chitosan for Cancer Theragnosis
Abstract Drug delivery is one of the major issues in the world of science, which receives a large part of the research in various fields. The ultimate goal of drug delivery is to help the patient with developing advanced drug delivery systems. These systems revolutionize the treatment of many diseases including cancer. Effective drug carriers can significantly reduce the undesirable side effec...
متن کاملA Critical Comparison Study on the pH-Sensitive Nanocomposites Based on Graphene-Grafted Chitosan for Cancer Theragnosis
Abstract Drug delivery is one of the major issues in the world of science, which receives a large part of the research in various fields. The ultimate goal of drug delivery is to help the patient with developing advanced drug delivery systems. These systems revolutionize the treatment of many diseases including cancer. Effective drug carriers can significantly reduce the undesirable side effec...
متن کاملA Sensitive Sensor for Nano-Molar Detection of 5-Fluorouracil by Modifying a Paste Sensor with Graphene Quantum Dots and an Ionic Liquid
5-fluorouracil is a widely used anticancer drug with many side effects on humans, and hence its analysis in biological samples is very important. Accordingly, a novel sensitive electrochemical approach was fabricated by incorporating graphene quantum dots (GCD) and 1-butylpyridinium bromide (BPBr) in the formulation of a carbon paste electrode (GQD/BPBr/CPE). The GQD was synthesized and charact...
متن کاملFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of nanomedicine
دوره 10 شماره
صفحات -
تاریخ انتشار 2015